https://doi.org/10.1038/s41598-019-45751-6 · Full text
Journal: Scientific Reports, 2019, №1
Publisher: Springer Science and Business Media LLC
Authors:
- Akira Obana
- Yuko Gohto
- Werner Gellermann
- Igor V. Ermakov
- Hiroyuki Sasano
- Takahiko Seto
- Paul S. Bernstein
Abstract
AbstractCarotenoids are anti-oxidative agents. Human skin and eyes contain specific carotenoid species known to prevent various pathologies caused by oxidative stress. We quantified skin and eye carotenoid levels and investigated their potential correlation in a population including 985 Japanese patients and staff members of an ophthalmology clinic (577 men, 408 women, mean age of 69.7 ± 13.6 [SD]). Skin carotenoid (SC) and macular pigment (MP) levels were measured with reflection spectroscopy and autofluorescence imaging methods, respectively. The mean SC index was 343.1 ± 142.1 (SD). SC indices for women were higher than for men (382 vs 315, p < 0.001). Smokers and overweight subjects (BMI ≥ 25) had lower SC indices. Subjects taking lutein supplements had higher SC indices than non-supplementing subjects (415 vs 325, p < 0.001). SC and MP indices were significantly correlated. The obtained data set can be used for reference purposes by Japanese subjects and researchers interested in tissue responses to diets high in carotenoids and lutein supplementation.
List of references
- Karrer, P., Helfenstein, A., Wehrli, H. & Wettstein, A. Pflanzenfarbstoffe XXV. Über die Konstitution des Lycopins und Carotins. Helv. Chim. Acta 13, 1084–1099, https://doi.org/10.1002/hlca.19300130532 (1930).
https://doi.org/10.1002/hlca.19300130532 - Yabuzaki, J. Carotenoids Database: structures, chemical fingerprints and distribution among organisms. Database (Oxford) 2017, https://doi.org/10.1093/database/bax004 (2017).
https://doi.org/10.1093/database/bax004 - Stahl, W. & Sies, H. Antioxidant activity of carotenoids. Mol. Aspects Med. 24, 345–351 (2003).
https://doi.org/10.1016/S0098-2997(03)00030-X - Stahl, W. & Sies, H. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta 1740, 101–107, https://doi.org/10.1016/j.bbadis.2004.12.006 (2005).
https://doi.org/10.1016/j.bbadis.2004.12.006 - Rao, A. V. & Rao, L. G. Carotenoids and human health. Pharmacol. Res. 55, 207–216, https://doi.org/10.1016/j.phrs.2007.01.012 (2007).
https://doi.org/10.1016/j.phrs.2007.01.012 - Bernstein, P. S. et al. Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 109, 1780–1787 (2002).
https://doi.org/10.1016/S0161-6420(02)01173-9 - Hata, T. R. et al. Non-invasive raman spectroscopic detection of carotenoids in human skin. J. Invest. Dermatol. 115, 441–448, https://doi.org/10.1046/j.1523-1747.2000.00060.x (2000).
https://doi.org/10.1046/j.1523-1747.2000.00060.x - Ermakov, I. V. & Gellermann, W. Validation model for Raman based skin carotenoid detection. Arch. Biochem. Biophys. 504, 40–49, https://doi.org/10.1016/j.abb.2010.07.023 (2010).
https://doi.org/10.1016/j.abb.2010.07.023 - Roberts, R. L., Green, J. & Lewis, B. Lutein and zeaxanthin in eye and skin health. Clin. Dermatol. 27, 195–201, https://doi.org/10.1016/j.clindermatol.2008.01.011 (2009).
https://doi.org/10.1016/j.clindermatol.2008.01.011 - Morganti, P. et al. Role of topical and nutritional supplement to modify the oxidative stress. Int. J. Cosmet. Sci. 24, 331–339, https://doi.org/10.1046/j.1467-2494.2002.00159.x (2002).
https://doi.org/10.1046/j.1467-2494.2002.00159.x - Ermakov, I. V. et al. Optical assessment of skin carotenoid status as a biomarker of vegetable and fruit intake. Arch. Biochem. Biophys. 646, 46–54, https://doi.org/10.1016/j.abb.2018.03.033 (2018).
https://doi.org/10.1016/j.abb.2018.03.033 - Bone, R. A., Landrum, J. T., Hime, G. W., Cains, A. & Zamor, J. Stereochemistry of the human macular carotenoids. Invest. Ophthalmol. Vis. Sci. 34, 2033–2040 (1993).
- Landrum, J. T. & Bone, R. A. Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys. 385, 28–40, https://doi.org/10.1006/abbi.2000.2171 (2001).
https://doi.org/10.1006/abbi.2000.2171 - Bhosale, P. et al. Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J. Biol. Chem. 279, 49447–49454, https://doi.org/10.1074/jbc.M405334200 (2004).
https://doi.org/10.1074/jbc.M405334200 - Li, B., Vachali, P., Frederick, J. M. & Bernstein, P. S. Identification of StARD3 as a lutein-binding protein in the macula of the primate retina. Biochemistry 50, 2541–2549, https://doi.org/10.1021/bi101906y (2011).
https://doi.org/10.1021/bi101906y - Shyam, R., Gorusupudi, A., Nelson, K., Horvath, M. P. & Bernstein, P. S. RPE65 has an additional function as the lutein to meso-zeaxanthin isomerase in the vertebrate eye. Proc. Natl. Acad. Sci. USA 114, 10882–10887, https://doi.org/10.1073/pnas.1706332114 (2017).
https://doi.org/10.1073/pnas.1706332114 - Hammond, B. R. Jr., Fletcher, L. M. & Elliott, J. G. Glare disability, photostress recovery, and chromatic contrast: relation to macular pigment and serum lutein and zeaxanthin. Invest. Ophthalmol. Vis. Sci. 54, 476–481, https://doi.org/10.1167/iovs.12-10411 (2013).
https://doi.org/10.1167/iovs.12-10411 - Nolan, J. M. et al. Enrichment of Macular Pigment Enhances Contrast Sensitivity in Subjects Free of Retinal Disease: Central Retinal Enrichment Supplementation Trials - Report 1. Invest. Ophthalmol. Vis. Sci. 57, 3429–3439, https://doi.org/10.1167/iovs.16-19520 (2016).
https://doi.org/10.1167/iovs.16-19520 - Krinsky, N. I., Landrum, J. T. & Bone, R. A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 23, 171–201, https://doi.org/10.1146/annurev.nutr.23.011702.073307 (2003).
https://doi.org/10.1146/annurev.nutr.23.011702.073307 - Henriksen, B. S. et al. Interrelationships between maternal carotenoid status and newborn infant macular pigment optical density and carotenoid status. Invest. Ophthalmol. Vis. Sci. 54, 5568–5578, https://doi.org/10.1167/iovs.13-12331 (2013).
https://doi.org/10.1167/iovs.13-12331 - Bernstein, P. S. Blue-Light Reflectance Imaging of Macular Pigment in Infants and Children. IOVS (2013).
https://doi.org/10.1167/iovs.13-11891 - Conrady, C. D. et al. Correlations Between Macular, Skin, and Serum Carotenoids. Invest. Ophthalmol. Vis. Sci. 58, 3616–3627, https://doi.org/10.1167/iovs.17-21818 (2017).
https://doi.org/10.1167/iovs.17-21818 - Age-Related Eye Disease Study Research Group. et al. The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS Report No. 22. Arch. Ophthalmol. 125, 1225–1232, https://doi.org/10.1001/archopht.125.9.1225 (2007).
https://doi.org/10.1001/archopht.125.9.1225 - Beatty, S. et al. Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest. Ophthalmol. Vis. Sci. 42, 439–446 (2001).
- Obana, A. et al. Macular carotenoid levels of normal subjects and age-related maculopathy patients in a Japanese population. Ophthalmology 115, 147–157, https://doi.org/10.1016/j.ophtha.2007.02.028 (2008).
https://doi.org/10.1016/j.ophtha.2007.02.028 - Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 309, 2005–2015, https://doi.org/10.1001/jama.2013.4997 (2013).
https://doi.org/10.1001/jama.2013.4997 - Ermakov, I. V., Ermakova, M. R., McClane, R. W. & Gellermann, W. Resonance Raman detection of carotenoid antioxidants in living human tissues. Opt Lett 26, 1179–1181 (2001).
https://doi.org/10.1364/OL.26.001179 - Ermakov, I. V., Sharifzadeh, M., Ermakova, M. & Gellermann, W. Resonance Raman detection of carotenoid antioxidants in living human tissue. J Biomed Opt 10, 064028, https://doi.org/10.1117/1.2139974 (2005).
https://doi.org/10.1117/1.2139974 - Ermakov, I. V. & Gellermann, W. Dermal carotenoid measurements via pressure mediated reflection spectroscopy. J Biophotonics 5, 559–570, https://doi.org/10.1002/jbio.201100122 (2012).
https://doi.org/10.1002/jbio.201100122 - Darvin, M. E., Meinke, M. C., Sterry, W. & Lademann, J. Optical methods for noninvasive determination of carotenoids in human and animal skin. J Biomed Opt 18, 61230, https://doi.org/10.1117/1.jbo.18.6.061230 (2013).
https://doi.org/10.1117/1.jbo.18.6.061230 - Ermakov, I. V. & Gellermann, W. Optical detection methods for carotenoids in human skin. Arch. Biochem. Biophys. 572, 101–111, https://doi.org/10.1016/j.abb.2015.01.020 (2015).
https://doi.org/10.1016/j.abb.2015.01.020 - Jilcott Pitts, S. B. et al. A non-invasive assessment of skin carotenoid status through reflection spectroscopy is a feasible, reliable and potentially valid measure of fruit and vegetable consumption in a diverse community sample. Public Health Nutr. 21, 1664–1670, https://doi.org/10.1017/S136898001700430X (2018).
https://doi.org/10.1017/S136898001700430X - Peng, Y. M. et al. Concentrations and plasma-tissue-diet relationships of carotenoids, retinoids, and tocopherols in humans. Nutr. Cancer 23, 233–246, https://doi.org/10.1080/01635589509514378 (1995).
https://doi.org/10.1080/01635589509514378 - Gellermann, W. Raman detection of carotenoids in human tissue in Carotenoids and Retinoids: Molecular Aspects and Health Issues (2005).
https://doi.org/10.1201/9781439822371.ch6 - Zidichouski, J. A., Mastaloudis, A., Poole, S. J., Reading, J. C. & Smidt, C. R. Clinical validation of a noninvasive, Raman spectroscopic method to assess carotenoid nutritional status in humans. J. Am. Coll. Nutr. 28, 687–693 (2009).
https://doi.org/10.1080/07315724.2009.10719802 - Scarmo, S. et al. Significant correlations of dermal total carotenoids and dermal lycopene with their respective plasma levels in healthy adults. Arch. Biochem. Biophys. 504, 34–39, https://doi.org/10.1016/j.abb.2010.07.004 (2010).
https://doi.org/10.1016/j.abb.2010.07.004 - Darvin, M. E. et al. Dermal carotenoid level and kinetics after topical and systemic administration of antioxidants: enrichment strategies in a controlled in vivo study. J. Dermatol. Sci. 64, 53–58, https://doi.org/10.1016/j.jdermsci.2011.06.009 (2011).
https://doi.org/10.1016/j.jdermsci.2011.06.009 - Obana, A. et al. Grade of Cataract and Its Influence on Measurement of Macular Pigment Optical Density Using Autofluorescence Imaging. Invest. Ophthalmol. Vis. Sci. 59, 3011–3019, https://doi.org/10.1167/iovs.17-23699 (2018).
https://doi.org/10.1167/iovs.17-23699 - You, Q. S. et al. Reproducibility of Macular Pigment Optical Density Measurement by Two-Wavelength Autofluorescence in a Clinical Setting. Retina 36, 1381–1387, https://doi.org/10.1097/IAE.0000000000000893 (2016).
https://doi.org/10.1097/IAE.0000000000000893 - Akuffo, K. O. et al. The Impact of Cataract, and Its Surgical Removal, on Measures of Macular Pigment Using the Heidelberg Spectralis HRA + OCT MultiColor Device. Invest. Ophthalmol. Vis. Sci. 57, 2552–2563, https://doi.org/10.1167/iovs.16-19141 (2016).
https://doi.org/10.1167/iovs.16-19141
Publications that cite this publication
Improving Skin Carotenoid Levels in Young Students through Brief Dietary Education Using the Veggie Meter
Akira Obana, Ryo Asaoka, Ayako Miura, Miho Nozue, Yuji Takayanagi, Mieko Nakamura
https://doi.org/10.3390/antiox11081570 ·
2022, Antioxidants, №8, p.1570
Scopus
WoS
Crossref citations:7
Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential
Antoine Grivard, Isabelle Goubet, Luiz Miranda de Souza Duarte Filho, Valérie Thiéry, Sylvie Chevalier, Raimundo Gonçalves de Oliveira-Junior, Noureddine El Aouad, Jackson Roberto Guedes da Silva Almeida, Przemysław Sitarek, Lucindo José Quintans-Junior, Raphaël Grougnet, Hélène Agogué, Laurent Picot
https://doi.org/10.3390/md20080524 ·
2022, Marine Drugs, №8, p.524
Scopus
WoS
Crossref citations:22
Carotenoids in Human Skin In Vivo: Antioxidant and Photo-Protectant Role against External and Internal Stressors
Maxim E. Darvin, Jürgen Lademann, Jörg von Hagen, Silke B. Lohan, Harald Kolmar, Martina C. Meinke, Sora Jung
https://doi.org/10.3390/antiox11081451 ·
2022, Antioxidants, №8, p.1451
Scopus
WoS
Crossref citations:34
Carotenoids: Source of Food Colour and its Benefits
Naganandhini K., Swathisri S., Radha Palaniswamy
https://doi.org/10.21048/ijnd.2021.58.1.24867
2021, The Indian Journal of Nutrition and Dietetics, p.120-137
Crossref citations:0
Effect of an antioxidant supplement containing high dose lutein and zeaxanthin on macular pigment and skin carotenoid levels
Akira Obana, Yuko Gohto, Risa Nakazawa, Takanobu Moriyama, Werner Gellermann, Paul S. Bernstein
https://doi.org/10.1038/s41598-020-66962-2 ·
2020, Scientific Reports, №1
Scopus
WoS
Crossref citations:22
Determinants and Suitability of Carotenoid Reflection Score as a Measure of Carotenoid Status
Elaine Rush, Isaac Amoah, Tung Diep, Shabnam Jalili-Moghaddam
https://doi.org/10.3390/nu12010113 ·
2020, Nutrients, №1, p.113
Scopus
WoS
Crossref citations:28
Skin Carotenoid Level as an Alternative Marker of Serum Total Carotenoid Concentration and Vegetable Intake Correlates with Biomarkers of Circulatory Diseases and Metabolic Syndrome
Mai Matsumoto, Hiroyuki Suganuma, Sunao Shimizu, Hiroki Hayashi, Kahori Sawada, Itoyo Tokuda, Kazushige Ihara, Shigeyuki Nakaji
https://doi.org/10.3390/nu12061825 ·
2020, Nutrients, №6, p.1825
Scopus
WoS
Crossref citations:26
In vivo β-carotene skin permeation modulated by Nanostructured Lipid Carriers
Eleonora Maretti, Eliana Leo, Cecilia Rustichelli, Eleonora Truzzi, Cristina Siligardi, Valentina Iannuccelli
https://doi.org/10.1016/j.ijpharm.2021.120322 ·
2021, International Journal of Pharmaceutics, p.120322
Scopus
WoS
Crossref citations:9
Characterizing Vegetable and Fruit Intake in a Remote Alaska Native Community Using Reflection Spectroscopy and 24-Hour Recalls
Courtney M. Hill, Mallie J. Paschall, Diane M. O'Brien, Andrea Bersamin
https://doi.org/10.1016/j.jneb.2021.02.002 ·
2021, Journal of Nutrition Education and Behavior, №8, p.712-718
Scopus
WoS
Crossref citations:1
Non-invasive Measurement of Carotenoids in Human Eye and Skin 眼と皮膚における非侵襲的カロテノイド計測
Akira Obana
https://doi.org/10.2530/jslsm.jslsm-42_0011
2021, The Journal of Japan Society for Laser Surgery and Medicine, №2, p.64-70
Crossref citations:0
Find all citations of the publication